Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reliability of Sputtered Aluminum Thin Film on Flexible Substrate Under High Cyclic Bending Fatigue Conditions

Identifieur interne : 001612 ( Main/Repository ); précédent : 001611; suivant : 001613

Reliability of Sputtered Aluminum Thin Film on Flexible Substrate Under High Cyclic Bending Fatigue Conditions

Auteurs : RBID : Pascal:13-0049214

Descripteurs français

English descriptors

Abstract

Aluminum thin films on flexible substrates are very popular as a back electrode in solar photovoltaic technology. However, during their manufacturing and use, the package is subject to cyclic bending, which leads to cracks in the conductive thin film and ultimately failure of the package. This paper investigates the effect of film thickness, bending diameter (BD), and number of cycles (NOC) on crack development and the percentage change in electrical resistance (PCER) of aluminum thin films under cyclic bending conditions. PCER-NOC diagrams are constructed at all considered factor-level combinations. These curves are used in comparisons between high and low levels of BD and film thickness. The Design of Experiment tool is used to investigate the effect and significance of film thickness, BD, NOC, and the interactions between them on the PCER. In this regard, all factors are found to be significant. Furthermore, thickness-NOC and BD-NOC interactions are significant, while thickness-BD interaction is not significant. Moreover, a finite element model is built to investigate the area of the highest stress on the aluminum thin film, in other words, the area with the most fatigue potential.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0049214

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Reliability of Sputtered Aluminum Thin Film on Flexible Substrate Under High Cyclic Bending Fatigue Conditions</title>
<author>
<name sortKey="Hamasha, Mohammad M" uniqKey="Hamasha M">Mohammad M. Hamasha</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Autonomous Solar Power, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vestal, NY 13850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alzoubi, Khalid" uniqKey="Alzoubi K">Khalid Alzoubi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Engineering Management Division, Collage of Engineering, Prince Sultan University</s1>
<s2>Riyadh 11586</s2>
<s3>SAU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11586</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Switzer, James C Iii" uniqKey="Switzer J">James C. Iii Switzer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Material Science and Engineering, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vestal, NY 13850</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SUSAN LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Systems Science and Industrial Engineering, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vestal, NY 13850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poliks, Mark D" uniqKey="Poliks M">Mark D. Poliks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vestal, NY 13850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Westgate, Charles R" uniqKey="Westgate C">Charles R. Westgate</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Autonomous Solar Power, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vestal, NY 13850</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0049214</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0049214 INIST</idno>
<idno type="RBID">Pascal:13-0049214</idno>
<idno type="wicri:Area/Main/Corpus">001362</idno>
<idno type="wicri:Area/Main/Repository">001612</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">2156-3950</idno>
<title level="j" type="abbreviated">IEEE trans. compon. packaging manuf. technol. : (2011, Print)</title>
<title level="j" type="main">IEEE transactions on components, packaging, and manufacturing technology : (2011. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium</term>
<term>Comparative study</term>
<term>Crack</term>
<term>Doped materials</term>
<term>Electronic packaging</term>
<term>Experimental design</term>
<term>Failures</term>
<term>Finite element method</term>
<term>Flexible structure</term>
<term>Indium oxide</term>
<term>Numerical method</term>
<term>Reliability</term>
<term>Resistor</term>
<term>Thermal ageing</term>
<term>Thermal cycle</term>
<term>Thin film</term>
<term>Tin addition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Fiabilité</term>
<term>Packaging électronique</term>
<term>Fissure</term>
<term>Défaillance</term>
<term>Résistance électrique</term>
<term>Etude comparative</term>
<term>Plan expérience</term>
<term>Méthode élément fini</term>
<term>Méthode numérique</term>
<term>Addition étain</term>
<term>Vieillissement thermique</term>
<term>Cycle thermique</term>
<term>Aluminium</term>
<term>Couche mince</term>
<term>Structure flexible</term>
<term>Oxyde d'indium</term>
<term>Matériau dopé</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Aluminium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aluminum thin films on flexible substrates are very popular as a back electrode in solar photovoltaic technology. However, during their manufacturing and use, the package is subject to cyclic bending, which leads to cracks in the conductive thin film and ultimately failure of the package. This paper investigates the effect of film thickness, bending diameter (BD), and number of cycles (NOC) on crack development and the percentage change in electrical resistance (PCER) of aluminum thin films under cyclic bending conditions. PCER-NOC diagrams are constructed at all considered factor-level combinations. These curves are used in comparisons between high and low levels of BD and film thickness. The Design of Experiment tool is used to investigate the effect and significance of film thickness, BD, NOC, and the interactions between them on the PCER. In this regard, all factors are found to be significant. Furthermore, thickness-NOC and BD-NOC interactions are significant, while thickness-BD interaction is not significant. Moreover, a finite element model is built to investigate the area of the highest stress on the aluminum thin film, in other words, the area with the most fatigue potential.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>2156-3950</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. compon. packaging manuf. technol. : (2011, Print)</s0>
</fA03>
<fA05>
<s2>2</s2>
</fA05>
<fA06>
<s2>11-12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Reliability of Sputtered Aluminum Thin Film on Flexible Substrate Under High Cyclic Bending Fatigue Conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAMASHA (Mohammad M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ALZOUBI (Khalid)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SWITZER (James C. III)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SUSAN LU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>POLIKS (Mark D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WESTGATE (Charles R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Autonomous Solar Power, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Engineering Management Division, Collage of Engineering, Prince Sultan University</s1>
<s2>Riyadh 11586</s2>
<s3>SAU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Material Science and Engineering, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Systems Science and Industrial Engineering, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Chemistry, State University of New York at Binghamton</s1>
<s2>Vestal, NY 13850</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2007-2016</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F1D</s2>
<s5>354000506245100300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0049214</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on components, packaging, and manufacturing technology : (2011. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aluminum thin films on flexible substrates are very popular as a back electrode in solar photovoltaic technology. However, during their manufacturing and use, the package is subject to cyclic bending, which leads to cracks in the conductive thin film and ultimately failure of the package. This paper investigates the effect of film thickness, bending diameter (BD), and number of cycles (NOC) on crack development and the percentage change in electrical resistance (PCER) of aluminum thin films under cyclic bending conditions. PCER-NOC diagrams are constructed at all considered factor-level combinations. These curves are used in comparisons between high and low levels of BD and film thickness. The Design of Experiment tool is used to investigate the effect and significance of film thickness, BD, NOC, and the interactions between them on the PCER. In this regard, all factors are found to be significant. Furthermore, thickness-NOC and BD-NOC interactions are significant, while thickness-BD interaction is not significant. Moreover, a finite element model is built to investigate the area of the highest stress on the aluminum thin film, in other words, the area with the most fatigue potential.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F06A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Packaging électronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electronic packaging</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Packaging electrónico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Fissure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Crack</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fisura</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Défaillance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Failures</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fallo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Résistance électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Resistor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Resistencia eléctrica(componente)</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Plan expérience</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Experimental design</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Plan experiencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Vieillissement thermique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thermal ageing</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Envejecimiento térmico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cycle thermique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thermal cycle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ciclo térmico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Aluminio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Structure flexible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Flexible structure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estructura flexible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001612 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001612 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0049214
   |texte=   Reliability of Sputtered Aluminum Thin Film on Flexible Substrate Under High Cyclic Bending Fatigue Conditions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024